Impresora

Una impresora es un dispositivo periférico del ordenador que permite producir una gama permanente de textos o gráficos de documentos almacenados en un formato electrónico, imprimiéndolos en medios físicos, normalmente en papel, utilizando cartuchos de tinta o tecnología láser (con tóner).

Muchas de las impresoras son usadas como periféricos, y están permanentemente unidas al ordenador por un cable. Otras impresoras, llamadas impresoras de red, tienen una interfaz de red interno (típicamente wireless o ethernet), y que puede servir como un dispositivo para imprimir en papel algún documento para cualquier usuario de la red.

Además, muchas impresoras modernas permiten la conexión directa de aparatos de multimedia electrónicos como las tarjetas CompactFlash, Secure Digital o Memory Stick, pendrives, o aparatos de captura de imagen como cámaras digitales y escáneres. También existen aparatos multifunción que constan de impresora, escáner o máquinas de fax en un solo aparato. Una impresora combinada con un escáner puede funcionar básicamente como una fotocopiadora.

Son diseñadas para realizar trabajos repetitivos de poco volumen, que no requieran virtualmente un tiempo de configuración para conseguir una copia de un determinado documento. Sin embargo, las impresoras son generalmente dispositivos lentos (10 páginas por minuto es considerado rápido), y el gasto por página es relativamente alto.

Para trabajos de mayor volumen existen las imprentas, que son máquinas que realizan la misma función que las impresoras pero están diseñadas y optimizadas para realizar trabajos de impresión de gran volumen, como sería la impresión de periódicos. Las imprentas son capaces de imprimir cientos de páginas por minuto o más.

Micrófono de fibra óptica

Un micrófono de fibra óptica convierte las ondas acústicas en señales eléctricas mediante la detección de cambios en la intensidad de la luz, en lugar de detectar cambios en la capacitancia o en campos magnéticos, como con los micrófonos convencionales. 

Durante su funcionamiento, la luz de una fuente láser viaja a través de una fibra óptica para iluminar la superficie de un diafragma reflectante. Las vibraciones del sonido del diafragma modulan la intensidad de la luz que refleja el diafragma en una dirección específica. La luz modulada se transmite entonces a través de una segunda fibra óptica a una foto detectora, que transforma la luz de intensidad modulada en audio analógico o digital para su transmisión o grabación. Los micrófonos de fibra óptica poseen un alto rango dinámico y de frecuencia, similar al de los mejores micrófonos convencionales de alta fidelidad.

Micrófono de condensador RF

Utilizan una tensión de RF comparativamente baja, generada por un oscilador de bajo ruido. La señal del oscilador o bien puede ser modulada en amplitud por los cambios de capacitancia producidas por las ondas de sonido al mover el diafragma o cápsula, o la cápsula puede ser parte de un circuito resonante que modula la frecuencia de la señal del oscilador. La demodulación produce una señal de frecuencia de audio de bajo ruido, con una impedancia de fuente muy baja. La ausencia de una tensión de polarización alta permite el uso de un diafragma con la tensión más baja, que puede ser utilizado para lograr la respuesta de frecuencia más amplia debido a una mayor sensibilidad. Los resultados del proceso de polarización de RF en una cápsula de impedancia eléctrica más baja, permite que los micrófonos de condensador de RF pueden funcionar en condiciones climáticas húmedas, que podrían crear problemas en los micrófonos que utilizan una corriente de referencia-DC con superficies aislantes contaminadas. La serie de micrófonos Sennheiser «MKH» utiliza la técnica de empuje de RF.

Los micrófonos de condensador abarcan toda la gama de transmisores de telefonía, así como para otros usos, desde los micrófonos de karaoke de bajo costo hasta los micrófonos de grabación de alta fidelidad. Por lo general, producen una señal de audio de alta calidad y ahora son la elección habitual de laboratorios y estudios de grabación. La idoneidad inherente de esta tecnología se debe a la masa muy pequeña que debe ser movida por la onda sonora incidente, a diferencia de otros tipos de micrófonos que requieren que la onda de sonido realice un mayor trabajo mecánico.

Micrófono de condensador

El micrófono de condensador (condenser microphone), fue inventado en los Laboratorios Bell en 1916 por Edward Christopher Wente.21 También llamado «micrófono electroestático» (electrostatic microphone) o «micrófono de capacidad» (capacitor microphone), en este tipo de micrófonos el diafragma actúa como una placa que «condensa» las vibraciones de las ondas sonoras, que producen cambios debido a la variación de la distancia que hay entre el diafragma y la placa. Hay dos tipos, dependiendo del método de extracción de la señal de audio desde el transductor: micrófonos de polarización de CC, y micrófonos de condensador de frecuencia de radio (RF) o de alta frecuencia (HF). 

En un micrófono de polarización de CC, las placas son sesgadas con una carga fija (Q). La tensión que existe entre las placas del condensador cambia con las vibraciones en el aire (de acuerdo con la ecuación de la capacitancia {\displaystyle {C}={Q \over V}}, donde Q = carga en culombios, C = capacitancia en faradios y V = diferencia de potencial en voltios). La capacitancia de las placas es inversamente proporcional a la distancia entre ellas para un condensador de placas paralelas. El montaje de placas fijas y móviles se llama un «elemento» o «cápsula». 

En el condensador se mantiene una carga casi constante. Con los cambios de capacidad, la carga a través del condensador cambia muy ligeramente, pero a frecuencias audibles es sensiblemente constante. La capacidad de la cápsula (alrededor de 5 a 100 pF) y el valor de la resistencia de polarización (100 mO a decenas de GO) forman un filtro que es de paso alto para la señal de audio, y de paso bajo para la tensión de polarización. Téngase en cuenta que la constante de tiempo de un circuito RC es igual al producto de la resistencia y la capacidad.

Historia del micrófono

Con el tiempo, la humanidad entendió la necesidad de desarrollar herramientas de comunicación más eficientes y de mayor alcance. Así, nació el deseo de aumentar el volumen de las palabras que buscaban ser transmitidas. El dispositivo de mayor antigüedad para lograr esto data de 600 a. C.; era una máscara con aperturas bucales que tenía un diseño acústico especial que incrementaba el volumen de la voz en los anfiteatros. En 1665, el físico inglés Robert Hooke fue el primero en experimentar con un elemento como el aire por medio de la invención del «Tin can telephone» o «Teléfono de lata» que consistía en un alambre unido a una taza en cada una de sus extremos. 

En 1827, Charles Wheatstone utiliza por primera vez la palabra “micrófono” para describir un dispositivo acústico diseñado para amplificar sonidos débiles. Entre 1870 y 1880 comenzó la historia del micrófono y las grabaciones de audio. El primer micrófono formaba parte del fonógrafo, que en esa época era el dispositivo más común para reproducir sonido grabado, y fue conocido como el primer “micrófono dinámico”. 

El inventor alemán Johann Philipp Reis diseñó un transmisor de sonido rudimentario, que utilizaba una tira metálica unida a una membrana vibrante y producía una corriente intermitente. En 1876 Alexander Graham Bell inventó el teléfono y por primera vez incluyó un micrófono funcional que usaba un electroimán. Este dispositivo era conocido como ‘transmisor líquido’, con el diafragma conectado a una varilla conductora en una solución de ácido. Estos sistemas, sin embargo, ofrecieron una captación de sonido de muy baja calidad, lo que incitó a los inventores a seguir vías alternativas de diseño.

Tecnología de las webcam

Las cámaras web normalmente están formadas por una lente, un sensor de imagen y la circuitería necesaria para manejarlos.

Existen distintos tipos de lentes, siendo las lentes plásticas las más comunes. Los sensores de imagen pueden ser CCD (charge coupled device) o CMOS (complementary metal oxide semiconductor). Este último suele ser el habitual en cámaras de bajo coste, aunque eso no signifique necesariamente que cualquier cámara CCD sea mejor que cualquiera CMOS. Dependiendo de la resolución de las cámaras encontramos los modelos de gama baja, que se sitúan alrededor de 320×240 píxeles. Las cámaras web para usuarios medios suelen ofrecer una resolución VGA (640×480) con una tasa de unos 30 fotogramas por segundo, si bien en la actualidad están ofreciendo resoluciones medias de 1 a 1,3 MP, actualmente las cámaras de gama alta cuentan con 3, 5, 8, 10 y hasta 15 megapíxeles y son de alta definición.

La circuitería electrónica es la encargada de leer la imagen del sensor y transmitirla a la computadora. Algunas cámaras usan un sensor CMOS integrado con la circuitería en un único circuito integrado de silicio para ahorrar espacio y costes. El modo en que funciona el sensor es equivalente al de una cámara digital normal. También pueden captar sonido, con una calidad mucho menor a la normal.

Software de las webcam

La instalación básica de una cámara web consiste en una cámara digital conectada a una computadora, normalmente a través del puerto USB. Lo que hay que tener en cuenta es que dicha cámara no tiene nada de especial, es como el resto de cámaras digitales, y que lo que realmente le da el nombre de «cámara web» es el software que la acompaña. 

El software de la cámara web toma un fotograma de la cámara cada cierto tiempo (puede ser una imagen estática cada medio segundo) y la envía a otro punto para ser visualizada. Si lo que se pretende es utilizar esas imágenes para construir un video, de calidad sin saltos de imagen, se necesitará que la cámara web alcance una tasa de unos 15 a 30 fotogramas por segundo. 

En los videos destinados a ser subidos en internet o ser enviados a dispositivos móviles, es mejor una cadencia de 14 fotogramas por segundo. De esta manera se consigue ahorrar espacio y aun así seguirá teniendo calidad, aunque podrían ser apreciados ligeros saltos en el movimiento. 

Si lo que se quiere es que esas imágenes sean accesibles a través de internet, el software se encargará de transformar cada fotograma en una imagen en formato JPG y enviarlo a un servidor web utilizando el protocolo de transmisión de ficheros (FTP). 

Historia de las webcam

En el Departamento de Informática de la Universidad de Cambridge la cafetera estaba situada en un sótano. Si alguien quería un café tenía que bajar desde su despacho y, si lo había, servirse una taza. Si no lo había, tenía que hacerlo a mano. Las normas decían que el que se termina la cafetera debe rellenarla, pero siempre había listos que no cumplían con las normas. 

En 1991, Quentin Stafford-Fraser y Paul Jardetzky, que compartían despacho, hartos de bajar tres plantas y encontrarse la cafetera vacía decidieron pasar al contraataque. Diseñaron un protocolo cliente-servidor que conectándolo a una cámara, transmitía una imagen de la cafetera a una resolución de 128 x 128 píxeles. 

Así, desde la pantalla de su ordenador sabían cuándo era el momento propicio para bajar por un café, y de paso sabían quiénes eran los que se acababa la cafetera y no la volvían a llenar. El protocolo se llamó XCoffee y tras unos meses de depuración se decidieron a comercializarlo. En 1992 salió a la venta la primera cámara web llamada XCam. 

Conexión de los ratones

Cableado

Es el formato más popular y más económico, sin embargo existen multitud de características añadidas que pueden elevar su precio, por ejemplo si hacen uso de tecnología láser como sensor de movimiento. En el correr de la primera década del siglo XXI se distribuyen con dos tipos de conectores posibles, tipo USB y PS/2; antiguamente también era popular usar el puerto serie. 
Es el preferido por los video-jugadores experimentados, ya que la velocidad de transmisión de datos por cable entre el ratón y la computadora es óptima en juegos que requieren de una gran precisión.

Inalámbrico

En este caso el dispositivo carece de un cable que lo comunique con la computadora, en su lugar utiliza algún tipo de tecnología inalámbrica. Para ello requiere un receptor que reciba la señal inalámbrica que produce, mediante baterías, el ratón. El receptor normalmente se conecta a la computadora a través de un puerto USB o PS/2. Según la tecnología inalámbrica usada pueden distinguirse varias posibilidades como cuales:

  • Radiofrecuencia 
    La Radio Frecuencia (RF) es el tipo más común y económico de este tipo de tecnologías. Funciona enviando una señal a una frecuencia de 2.4 GHz, popular en la telefonía móvil o celular, la misma que los estándares IEEE 802.11b y IEEE 802.11g. Es popular, entre otras cosas, por sus pocos errores de desconexión o interferencias con otros equipos inalámbricos, además de disponer de un alcance suficiente: hasta unos 10 metros. 

  • Infrarrojo
    La tecnología infrarroja (IR) utiliza una señal de onda infrarroja como medio de transmisión de datos, popular también entre los controles o mandos remotos de televisiones, equipos de música o en telefonía celular. A diferencia de la anterior, tiene un alcance medio inferior a los 3 metros, y tanto el emisor como el receptor deben estar en una misma línea visual de contacto directo ininterrumpido para que la señal se reciba correctamente. Por ello su éxito ha sido menor, llegando incluso a desaparecer del mercado. 

  • Bluetooth 
    La tecnología Bluetooth (BT) es la más reciente como transmisión inalámbrica (estándar IEEE 802.15.1), que cuenta con cierto éxito en otros dispositivos. Su alcance es de unos 10 metros o 30 pies (que corresponde a la Clase 2 del estándar Bluetooth).

Ratón Trackball

En concepto de trackball es una idea que parte del hecho: se debe mover el puntero, no el dispositivo, por lo que se adapta para presentar una bola, de tal forma que cuando se coloque la mano encima se pueda mover mediante el dedo pulgar, sin necesidad de desplazar nada más ni toda la mano como antes. De esta manera se reduce el esfuerzo y la necesidad de espacio, además de evitarse un posible dolor de antebrazo por el movimiento de éste.

A algunas personas, sin embargo, no les termina de resultar realmente cómodo. Este tipo ha sido muy útil por ejemplo en la informatización de la navegación marítima.